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Abstract 

Part II of this three-part review examines the evidence for the involvement of the pro-inflammatory cytokine, 
Tumour Necrosis Factor-alpha (TNFα) in neuropathologies with a particular focus on Alzheimer’s Dementia 
(AD). It helps to underpin the support for Part III – establishing the basis for using anti-TNF therapy and why it 
is justified to target and treat these health problems, including chronic stroke, dementias, neuropathic pain or 
traumatic brain injury. All of these can become chronic illnesses and are of major incidence with a grossly unmet 
need to improve their treatment. 

Part I established the role of TNFα as a direct regulator of neuronal synaptic activity. It is in this context that Part 
II analyses abnormalities in TNF levels associated with disease, using AD as an example of the consequence that 
can arise from TNF-induced changes in the brain. Parts I and II then provide support for clinical application of 
anti-TNF therapy, which is discussed in Part III not only for treating the dementias, but also its great benefits in 
reducing long-term pain during rehabilitation from traumatic brain injury or chronic stroke, areas where 
Perispinal Etanercept therapy holds special significance.  
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Late Onset Alzheimer’s Dementia as an 
example of global depression in brain 
function, showing many aspects of long-
term depression 
To reiterate from Part I, the evidence is consistent 
with a role for TNF in inducing a rapid rise in CP-
AMPARs in a dose-responsive manner, which 
contributes to excitotoxic vulnerability, and hence to 
the ensuing loss of brain function. TNFα also 
regulates neuronal inhibition by affecting the 
endocytosis of the GABA-A receptor, the principle 

mediator of “fast” inhibition in the brain. It is in this 
context that the TNFα-induced changes in neuronal 
circuit responses occur very rapidly, within 15–60 
minutes and can be completely inhibited by the 
presence of soluble TNFR1 receptor [1–5]. These 
observations are consistent with the effects of the anti-
TNFα targeted Perispinal Etanercept (PSE) therapy, 
which are also rapid, with responses detected in 
treated patients occurring over a similar fast time 
course [6–12]. 

It is becoming possible to determine early and with 
high level accuracy those amongst us who will go on 
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to develop Alzheimer’s disease [13–15]. Diagnostic 
biomarkers are becoming defined that will 
predetermine up to 20 years before onset those who 
are at risk of developing dementia later in life. Thus, 
early diagnosis can now be carried out several decades 
before the first realisation of disease onset, previously 
only able to be diagnosed by observing those classical 
behavioural and mental symptoms typically associated 
with dementia. With these advances has also come the 
ready availability of screening for dementia at the 
very early stage in the population by using simple 
blood tests [14, 15]. However, as a consequence of the 
breakthrough in diagnosis of dementia, there arises a 
currently unmet need for early intervention treatment 
that will prevent the disease from progressing. 

Tentative evidence for this was presented in that an 
analysis of 42,193 patients with rheumatoid arthritis 
for those who developed Alzheimer’s disease showed 
significantly reduced incidence (adjusted odds ratio 
(OR) 0.440; 95% confidence interval (CI) 0.223–
0.868; p=0. 0178) [16]. The risk of AD was not 
affected by exposure to sulfasalazine, prednisone or 
rituximab and of the anti-TNF therapies used, 
Etanercept (Enbrel) treatment was found superior with 
nearly 70% reduced incidence of dementia compared 
to the background control population [16]. Such a 
treatment, if proven to be effective in trials would 
have enormous impacts, alleviating the burden of 
socioeconomic stress caused by dementia. 
Furthermore, other neurological pathologies including 
chronic stroke, traumatic brain injury and neuropathic 
pain will benefit greatly from this therapy as is shown 
by the evidence outlined below. 

Neurodegenerative disease and post-injury 
environments are characterised by abnormally high 
levels of TNF that have been found responsible for the 
neuronal cytotoxicity and dysfunction [17–21] and 
TNF can directly induce neuronal cell death [22–25]. 

 

The role of TNF in Alzheimer’s disease: β  
amyloid protein (Aβ) and its relationship to 
TNFα production 
A link between beta (β)-amyloid (Aβ) protein 
deposition and the plaque formation typically 
associated with Alzheimer’s disease has been a long 

standing dogma with amyloid plaque as the causative 
factor in dementia. This has culminated in the abject 
failure by the major pharmaceutical companies 
recently using antibodies targeting the beta-amyloid 
protein (Aβ1-42) to prevent or ameliorate Alzheimer’s 
disease (Pfizer and Johnson & Johnson: 
Bapineuzumab; Eli Lilly: Solanezumab). 
Consequently, it is becoming clear that amyloid 
deposition is not causally associated with AD but 
rather a by-product of the disease, which may in fact, 
be nature’s way of minimising the damage to the 
neurons caused by the soluble form of the Aβ protein 
by removing it as inactive insoluble aggregates [26, 
27].  

Synaptic plasticity mechanisms, including those 
underlying the process of LTP or LTD of 
glutamatergic transmission, constitute the neuronal 
basis for learning and memory [28] and they are 
highly vulnerable to rapid disruption by soluble 
Aβ species derived either by chemical synthesis ([29–
32]; Figure 1) or from cells that naturally secrete them 
after the cleavage of the amyloid precursor protein 
(APP) by the β- and γ-secretase enzymes [33]. Recent 
research supports a key role for the soluble oligomeric 
forms of the amyloid protein, particularly Aβ dimers, 
in amyloid effects on synaptic plasticity [34]. 

What has only become more apparent recently is a 
connection between the excess production of the 
soluble amyloid protein, Aβ1-42 and the increased 
production of TNFα as part of a vicious cycle of brain 
damage [35]. Several studies have shown that beta-
amyloid (Aβ1-42) inhibits LTP (i.e., memory). In many 
studies now reported, Aβ1-42 has been found to inhibit 
the induction of hippocampal LTP [29, 30, 36–43]. It 
is also known that Aβ1-42 provokes a microglial-
mediated inflammatory response that contributes to 
the neurodegeneration characteristic of Alzheimer’s 
disease [44]. However, TNFα has a key role in Aβ1-42 
inhibition of LTP. Thus, the suppression of LTP by 
Aβ1-42 was absent in mutant mice null for TNF 
receptor type 1 (TNF-R1), and it was also prevented 
by the inhibitors of TNFα ([45]; reviewed in [34]). In 
addition, exogenous TNFα inhibited LTP induction 
and the inhibition of LTP by TNFα involved 
activation of mGluR1 and p38 MAP kinase, the same 
receptor required for the Aβ1-42-mediated inhibition of 
LTP induction [45].  
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The GluN2B NMDAR is also involved in the stress-
mediated inhibition of memory function [46]. 
Evidence that TNFα, once again, is involved in the 
deleterious action, also involving Aβ, was provided 
when it was shown that TNF antagonists are able to 
prevent the Aβ inhibition of plasticity and the 
abrogation of a similar disruptive effect of TNF by 
using a GluN2B-selective antagonist [47]. Moreover, 
at nearby synapses that were resistant to the inhibitory 
effect of TNF, Aβ1-42 did not significantly affect 
plasticity. Thus, the evidence is clearly mounting that 
cognitive impairment in Alzheimer’s is due to 
synaptic dysfunction caused by the accumulation of 
soluble Aβ-peptide long before widespread synaptic 
loss and neurodegeneration occurs. This process 
involves soluble Aβ oligomers, which can rapidly 
disrupt synaptic memory mechanisms at extremely 
low concentrations and act by inducing TNF 
production [45]. 

In this context, one of the most exciting findings 
derives from a very recent study that compared 
infusing either the fibrillar (FAβ) or the soluble form 
of Aβ1-42 for its effects on the rat brain over extended 
periods [48]. These studies showed that the soluble 
form (Aβ1-42) was much more potent in its effects on 
the expression of the pro-inflammatory factors, toll-
like receptor 4 (TLR-4) and TNFα, with activation of 
NF-κB signalling. Taken together, the results from 
these studies clearly indicate that the soluble Aβ 
protein oligomers are the neurotoxic form and this 
neurotoxicity proceeds via TNF activation of the NF-
κB-mediated pro-inflammatory response [48]. More 
recently, TNFα was shown as the mediator of Aβ 
oligomers in mice and monkeys to induce synapse 
loss and memory impairment [49], whereby 
TNFα/TNFR1 signalled inside brain cells by 
activating the double stranded RNA dependent protein 
kinase, PKR. It also led to increased phosphorylation 
of the Insulin Receptor Substrate, IRS-1, important for 
insulin signalling, such that IRS-1 became serine 
phosphorylated, inhibiting IRS-1 recruitment of the 
PI3K/Akt signalling, similar to that which occurs in 
insulin resistant cells in diabetes [49]. 

 

TNF increases Aβ secretase levels to 
promote production of soluble amyloid 
protein. The vicious cycle of brain damage 
Generation of Aβ1-42, the harmful, toxic, activated 
form of beta-amyloid protein, occurs through the 
proteolysis of the Amyloid Precursor Protein (APP), a 
nerve cell surface membrane protein, by the sequential 
actions of the β- and γ-secretase enzymes.  The 
cytokines, IFN-γ, IL-1β, and TNF specifically 
increase the expression of APP on astrocytes [50–52] 
and stimulate γ-secretase activity, concomitant with 
increased production of Aβ1-42 [53]. Subsequently, 
IFN-γ and TNF were shown to enhance Aβ1-42 
production from APP-expressing astrocytes and 
cortical neurons, and the numbers of astrocytes 
expressing IFN-γ was increased and IFN-γ induced 
TNF production [54]. In addition, TNF signalling 
stimulated the β-site APP-cleaving enzyme (BACE-1, 
or β-secretase) expression, thereby enhancing β-site 
processing of APP in astrocytes. Furthermore, TNFR1 
depletion reduced BACE-1 activity [55]. Logically, 
therefore, anti-TNF agents should, among their other 
actions, be effective APP cleavage inhibitors. Results 
obtained in mice with long-term inhibition of TNF are 
functionally consistent with this [56], and it was 
concluded that one physiological role for TNF in the 
brain is to maintain APP and Aβ homeostasis, with 
excessive TNF generation, from whatever origin, 
upsetting this to the detriment of synaptic function 
because Aβ is then produced too rapidly.  

Once generated excessively, Aβ1-42 induces more 
TNF, which drives the pathology associated with 
Alzheimer's disease. Thus, to summarise the evidence 
above, TNF has three directly interlocking pathogenic 
roles in encephalopathies in which TNF levels in the 
brain are elevated: (i) TNF increases the APP levels to 
cause pathology; (ii) TNF participates in driving APP 
into Aβ1-42, by increasing secretase expression; and 
(iii) TNF, by inducing Aβ1-42, which in turn, mediates 
many of its harmful effects, predominantly acting in a 
feed-forward manner to further increase the levels of 
TNF production from the glial cells.  

Clearly, all of these actions of TNF make it a very 
attractive therapeutic target. Logically, the Aβ1-42-
induced TNF can be expected to add to the TNF pool 
inducing APP, as well as increasing its breakdown to 
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Aβ1-42. These links, once initiated, between the 
production of TNF and Aβ1-42 and the positive 
feedback loop will combine in concert with any 
additional TNF production derived from over-
expression of inflammatory responses to exacerbate 
the continued decline and inevitable worsening in 
brain function detected during Alzheimer's disease 

(Fig. 1). In this regard, Alzheimer’s typifies the 
neuropathological role of TNF and as one of the 
imminent health crises facing the human race, as we 
all get older, demands that we pay increased attention 
to it and focus on clinical development of 
interventions such as those outlined in Part III. 

 

 

 

 
 

 

Figure 1. Causative stress factors for long-term depression in the brain such as traumatic brain injury, ischaemia/hypoxia, infection or 
other lead to damage and increased production of TNF, which in turn increases expression of the Amyloid Precursor Protein (APP), 

whose proteolytic cleavage produces the beta-amyloid peptide, Aβ1-42 (or Aβ42) that feeds back to further exacerbate increased levels of 
TNF production. This cycle (indicated by the circling red arrow), if left unchecked, will result not only in LTD, but also neuropathology 

due to cell death and loss of neurons causing dementia. Modified from [57]. 
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